98 research outputs found

    'Calving laws', 'sliding laws' and the stability of tidewater glaciers

    Get PDF
    A new calving criterion is introduced, which predicts calving where the depth of surface crevasses equals ice height above sea level. Crevasse depth is calculated from strain rates, and terminus position and calving rate are therefore functions of ice velocity, strain rate, ice thickness and water depth. We couple the calving criterion with three 'sliding laws', in which velocity is controlled by (1) basal drag, (2) lateral drag and (3) a combination of the two. In model 1, velocities and strain rates are dependent on effective pressure, and hence ice thickness relative to water depth. Imposed thinning can lead to acceleration and terminus retreat, and ice shelves cannot form. In model 2, ice velocity is independent of changes in ice thickness unless accompanied by changes in surface gradient. Velocities are strongly dependent on channel width, and calving margins tend to stabilize at flow-unit widenings. Model 3 exhibits the combined characteristics of the other two models, and suggests that calving glaciers are sensitive to imposed thickness changes if basal drag provides most resistance to flow, but stable if most resistance is from lateral drag. ice shelves can form if reduction of basal drag occurs over a sufficiently long spatial scale. In combination, the new calving criterion and the basal-lateral drag sliding function (model 3) can be used to simulate much of the observed spectrum of behaviour of calving glaciers, and present new opportunities to model ice-sheet response to climate change.</p

    Spatially distributed runoff at the grounding line of a large Greenlandic tidewater glacier inferred from plume modelling

    Get PDF
    Understanding the drivers of recent change at Greenlandic tidewater glaciers is of great importance if we are to predict how these glaciers will respond to climatic warming. A poorly constrained component of tidewater glacier processes is the near-terminus subglacial hydrology. Here we present a novel method for constraining near-terminus subglacial hydrology with application to marine-terminating Kangiata Nunata Sermia in South-west Greenland. By simulating proglacial plume dynamics using buoyant plume theory and a general circulation model, we assess the critical subglacial discharge, if delivered through a single compact channel, required to generate a plume that reaches the fjord surface. We then compare catchment runoff to a time series of plume visibility acquired from a time-lapse camera. We identify extended periods throughout the 2009 melt season where catchment runoff significantly exceeds the discharge required for a plume to reach the fjord surface, yet we observe no plume. We attribute these observations to spatial spreading of runoff across the grounding line. Persistent distributed drainage near the terminus would lead to more spatially homogeneous submarine melting and may promote more rapid basal sliding during warmer summers, potentially providing a mechanism independent of ocean forcing for increases in atmospheric temperature to drive tidewater glacier acceleration

    Towards quantifying the glacial runoff signal in the freshwater input to Tyrolerfjord–Young Sound, NE Greenland

    Get PDF
    Terrestrial freshwater runoff strongly influences physical and biogeochemical processes at the fjord scale and can have global impacts when considered at the Greenland scale. We investigate the performance of the HIRHAM5 regional climate model over the catchments delivering freshwater to Tyrolerfjord and Young Sound by comparing to the unique Greenland Ecological Monitoring database of in situ observations from this region. Based on these findings, we estimate and discuss the fraction of runoff originating from glacierized and non-glacierized land delivered at the daily scale between 1996 and 2008. We find that glaciers contributed on average 50–80% of annual terrestrial runoff when considering different sections of Tyrolerfjord–Young Sound, but snowpack depletion on land and consequently runoff happens about one month earlier in the model than observed in the field. The temporal shift in the model is a likely explanation why summer surface salinity in the inner fjord did not correlate to modelled runoff. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13280-016-0876-4) contains supplementary material, which is available to authorized users

    Greenland tidewater glacier advanced rapidly during era of Norse Settlement

    Get PDF
    ACKNOWLEDGMENTS We thank the Greenland Institute of Natural Resources for providing logistical support in Nuuk. Martin Blicher, Thomas Juul-Pedersen, and Johanne Vad are thanked for their research and field assistance. We acknowledge the support of the National Museum of Greenland for permission to undertake excavations near Norse ruin sites (permit 2015/03). Project funding was provided by the Leverhulme Trust Research Project grant 2014-093, and J.M. Lea was supported by funding from the Quaternary Research Association, British Society for Geomorphology, and a UK Research and Innovation (UKRI) Future Leaders Fellowship (MR/S017232/1). We thank two anonymous reviewers and the editor for constructive comments, which helped to substantially improve this paper. D.M. Pearce would like to dedicate this paper to her father Richard M. Pearce.Peer reviewedPostprin

    Toward Effective Collaborations between Regional Climate Modeling and Impacts-Relevant Modeling Studies in Polar Regions

    Get PDF
    What: The aim of this workshop was to discuss the needs and challenges in using high-resolution climate model outputs for impacts-relevant modeling. Development of impacts-relevant climate projections in the polar regions requires effective collaboration between regional climate modelers and impacts-relevant modelers in the design stage of high-resolution climate projections for the polar regions. When: 8 November 2021 Where: Online

    Brief communication: Impact of common ice mask in surface mass balance estimates over the Antarctic ice sheet

    Get PDF
    Regional climate models compute ice sheet surface mass balance (SMB) over a mask that defines the area covered by glacier ice, but ice masks have not been harmonised between models. Intercomparison studies of modelled SMB therefore use a common ice mask. The SMB in areas outside the common ice mask, which are typically coastal and high-precipitation regions, is discarded. Ice mask differences change integrated SMB by between 40.5 and 140.6 Gt yr(-1) (1.8 % to 6.0 % of ensemble mean SMB), equivalent to the entire Antarctic mass imbalance. We conclude there is a pressing need for a common ice mask protocol
    corecore